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Abstract

Peculiar oscillating convection is observed when two-dimensional double-diffusive convection in porous medium is analysed numer-
ically. The top and bottom walls of an enclosure are insulated, and constant and opposing heat and mass fluxes are prescribed on the
vertical walls. The peculiar oscillations are of three types: (1) Chaotic oscillations wherein the main flow is due to temperature; however,
the convection due to concentration is strong enough to generate this peculiar oscillation. (2) The ‘sudden steady state case’ caused by the
shifts from thermally-driven to concentration-driven forces. (3) The ‘re-oscillation case’ caused by the convection pattern changes from
centrosymmetric to non-centrosymmetric.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Double-diffusive convection in porous medium, which
occurs because of temperature and concentration differ-
ences, is observed in many disciplines, for example, electro-
chemistry, geophysics, etc. [1–3]. Because heat and mass
transfers in a membrane influence the reaction [4], it is
important to understand the double-diffusive convection
in porous media in detail. Various authors have theoreti-
cally and numerically studied the double-diffusive convec-
tion in a fluid-saturated porous enclosure due to the
opposing heat and mass fluxes on vertical walls [5–12]. In
these studies, the numerical calculations yielded oscillatory
solutions [9,10]. In the former paper [9], we performed cal-
culations only when the aspect ratio was 5. Furthermore, it
has been observed that the oscillation pattern of Nusselt
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number Nu changes abruptly with time. In this paper, we
have performed calculations in order to clarify why such
peculiar oscillations occur. By analysing the double-diffu-
sive convection pattern, we intend to elucidate the physical
mechanism responsible for the occurrence of such oscilla-
tions. In conclusion, three distinct kinds of peculiar oscilla-
tions can be observed, and accordingly, the peculiar
oscillations are classified into three types.

2. Problem statements

We consider a two-dimensional vertical enclosure filled
with a homogeneous, fluid-saturated porous medium of
aspect ratio A. The top and bottom walls are insulated.
Constant heat flux KT and mass flux Kc are prescribed
through the vertical walls. The governing equations are
as follows: equation of momentum conservation in the
Darcy regime with the Boussinesq approximation, equa-
tion of continuity and equations for the mass and thermal
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Fig. 1. FFT of the time-dependence of Nusselt number when R = 100, Le = 20 and A = 5.
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energy conservation. The velocities, temperature and con-
centration are zero at the initial condition. The buoyancy
ratio is defined by

N ¼ aKT

bKc

; ð1Þ

where a is coefficient of thermal expansion and b is coeffi-
cient of concentration expansion.

Governing equations are solved numerically with the
boundary and initial conditions by the finite difference
method. No grid point is set on the physical boundaries
(jxj = 1 and jyj = A). The first and end grid points are
placed at a distance of half a grid space away from the
boundaries. The boundary conditions at the walls are
applied to these points. The numerical scheme used here
is second-order accurate in space and first-order accurate
in time. The matrices are solved under the given boundary
conditions by the conjugate gradient method. For further
details regarding this method, refer to Ref. [8].

In the previous calculations [9], the numerical grids of
62 � 302 were sufficient because we considered only the
simple oscillation case. However, it is necessary to use a
smaller mesh in order to study the peculiar oscillation
problem. We have attempted to calculate when the grid size
exceeds 62 � 302. The oscillation patterns of Nu are similar
when the grid size exceeds 102 � 502. Therefore, we can
arrive at a solution of sufficient accuracy in the present cal-
culation if we use grids greater than 102 � 502.

In the present study, we performed calculations for the
following cases: the Rayleigh–Darcy number R = 50, 100
and 200; the Lewis number Le = 2, 5, 10, 20 and 50; and
the aspect ratio A = 2.5 and 5.

3. Results and discussion

3.1. Chaotic oscillation case

Nmin is defined as the minimum value of the buoyancy
ratio that generates oscillation. In our previous study [9],
we observed that the oscillation of Nu was very complex
near Nmin; however, the reason for this oscillation pattern
was not clear. Fig. 1 shows the oscillations of Nu and the
corresponding FFT when R = 100, Le = 20 and A = 5. In
this case, Nmin = 0.53. As shown in Fig. 1a, Nu oscillates
randomly and a clear peak is not observed in the FFT.
From these figures, chaotic oscillation can be observed
when N = 0.55. In the previous research [9], we were
unable to determine whether the oscillation of Nu was cha-
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otic or not. The oscillation is certainly chaotic in the pres-
ent calculation when N is near Nmin. With a slight increase
in N, the complex oscillation pattern changes to a simple
one. In Fig. 1b, N = 0.60. The oscillation appears monoto-
nous and a prominent peak is observed in the FFT. We
also need to elucidate the convection pattern of chaotic
oscillation. Fig. 2 shows the contour lines of stream func-
tions when R = 100, Le = 20 and N = 0.55. In these stream
functions, positive values correspond to the clockwise flow
caused by temperature gradients and negative values to the
counter-clockwise flow caused by concentration gradients.
Fig. 2 reveals that the main flow is driven thermally. How-
ever, the convection due to the concentration gradients
exists, and the magnitude of velocity and the convection
pattern change periodically. Sometimes, the flow pattern
Fig. 2. Nu and contour lines of stream functions for R = 100, Le = 20,
N = 0.55 and A = 5.
divides the convection cell into an upper and a lower zone.
In this case, the intensity of the convection becomes weak
and as a result Nu assumes small values. When a single con-
vection cell is formed and the flow is thermally-driven, Nu

assumes large values. In addition, the convection patterns
are centrosymmetric.
3.2. Sudden steady state case

From other calculations, we sometimes observe cases
where the oscillation stops suddenly and the system reaches
a steady state, as shown in Fig. 3. Such a pattern is referred
to as ‘sudden steady state case’ in the present paper. Para-
metric values for Fig. 3a are R = 50, Le = 50, A = 5 and
N = 0.61, and those for Fig. 3b are R = 100, Le = 2,
A = 5 and N = 0.83. Based on these figures, the ‘sudden
steady state case’ can be described as follows: Initially,
the oscillation is chaotic. In the middle of the chaotic per-
iod, Nu drops abruptly to a very small value; then, it rises
slightly and attains the steady state. Such peculiar pattern
Fig. 3. Sudden steady state case of Nu.
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can only be observed when N is slightly smaller than Nmin

and A P 5.
Fig. 4 shows the contour lines of the stream functions of

the ‘sudden steady state case’ when R = 100, Le = 2, A = 5
and N = 0.83 (Fig. 3b). Until t is 13.2, the chaotic oscilla-
tion persists. The oscillation pattern is similar to the cha-
otic oscillation case shown in Fig. 2. Initially, the
convection is temperature-dominated, and the convection
cell is divided into upper and lower zones. However, in
the steady state, the direction of the convection is reversed.
Eventually, the convection is driven completely by the con-
centration gradients (counter-clockwise flow). Therefore, in
the ‘sudden steady state case’, the chaotic oscillation occurs
because the temperature-dominated and concentration-
dominated convections compete against each other in the
beginning. The concentration-driven force evolves gradu-
ally with time and eventually dominates the entire domain.
Then, the system reaches a steady state. In the present case,
it should be noted that the buoyancy ratio N is less than
Nmin and outside the oscillation region. The reason for this
peculiar phenomenon is probably the different diffusivities
of the concentration and the thermal energy. It is observed
that a longer time is required to attain the steady state
when a large Le is considered (Le = 50) than when Le = 2.
3.3. Re-oscillation case

We think that this is the most peculiar case of oscillation
we have ever seen. This phenomenon can be only observed
when R is large, N is slightly larger than Nmin, and A is 2.5;
Fig. 4. Contour lines of the stream functions of the sudden steady state
case for R = 100, Le = 2, A = 5 and N = 0.83.
it is a very uncommon situation. Fig. 5a shows Nu as a
function of time when R = 200, Le = 2, A = 2.5 and
N = 0.83, and Fig. 5b shows Nu as a function of time when
R = 200, Le = 10, A = 2.5 and N = 0.56. From both fig-
ures, it appears that the oscillation is damped at an early
stage and maintains a steady state until about t < 40. After
that, however, Nu starts oscillating and this re-oscillation
has a very large period.

The flow pattern for the re-oscillation case is shown in
Fig. 6. In the first case shown in Fig. 6a, the oscillation is
just damping. The main flow is convection due to temper-
ature gradients but there are convection cells due to con-
centration gradients on the left and right hand sides.
After that, in (b), (c) and (d), the convection due to the
temperature becomes weaker and that due to the concen-
tration creates a main flow path along the boundary sur-
rounding a thermally-driven cell. The convection pattern
is centrosymmetric in these four cases [(a)–(d)]; however,
it becomes non-centrosymmetric with time. In (e), the con-
Fig. 5. Re-oscillation case of Nu.



Fig. 6. Nu and contour lines of the stream functions for R = 200, Le = 2, N = 0.83 and A = 2.5.
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vection cell due to the temperature moves downward and
thereafter Nu increases slightly. Subsequently, this convec-
tion cell becomes distorted, particularly in the lower and
left region, as can be observed in (g) and (h). Then, the con-
vection due to the temperature becomes stronger and Nu

increases and attains the peak value at (h). The flow
becomes weak and Nu decreases; however, the deformed
convection pattern still retains its shape as shown in (i).
Thereafter, the flow pattern gradually restores to the cen-
trosymmetric pattern. Since such flow pattern changes
require a very long time, the Nu re-oscillation has a long
period.

A possible situation is discussed below. By the time
t = 5, the concentration has diffused in the entire domain,
which brings the system to a quasi-stable steady state.
However, it starts readjusting itself to a more stable state,
and this process continues up to t ffi 40. Eventually, the sys-
tem attains a slowly oscillating convection as the most sta-
ble state.
4. Conclusions

The three types of peculiar oscillations—chaotic oscil-
lation, sudden steady state case and re-oscillation—have
been investigated and the conditions for generating them
have been explained. Chaotic oscillation is generated
when buoyancy ratio N is near Nmin. Though the main
flow is due to temperature, convection due to concentra-
tion is strong enough to generate this peculiar oscillation.
When N is slightly less than Nmin and A P 5, sometimes
the ‘sudden steady state case’ can be observed. This phe-
nomenon is caused by the shift from the thermally-driven
force to the concentration-driven force. The ‘re-oscilla-
tion case’ can be observed only when N is slightly greater
than Nmin and A = 2.5. This phenomenon occurs because
the convection pattern changes from centrosymmetric to
non-centrosymmetric. Since this change requires a very
long time, the re-oscillation typically has a very long
period.
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Such phenomena appear unusual; however, they are
understandable in terms of the convection-cell-pattern
movement. Perhaps we have ignored such phenomena
when we glimpsed them. Because double-diffusive convec-
tion in porous media can be observed in many fields, there
is a possibility of discovering the phenomena wherein the
state of oscillation changes significantly with time.
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